Académicos

Alain Cloutier

...

Département des sciences du bois et de la forêt
Faculté de foresterie, géographie, géomatique
Pavillon Abitibi-Price
2405, rue de la Terrasse, local 2135
Université Laval
Québec Québec G1V 0A6
Canada

Sus principales áreas de investigación son:

  • Productos compuestos de madera
  • Modelación de procesos de fabricación y de comportamiento de compuestos de madera
  • Modificación de la madera

Proyectos

  1. Modeling of wood-based composites. Discovery Grant, Natural Sciences and Engineering Research Council of Canada (NSERC). 2017-2022. 235000 $CAD.
  2. Laboratory of design and characterization of renewable materials. Equipment Grant. Canadian Foundation for Innovation (CFI) – Innovation Fund. 2015-2020. 3 130 650 $CAD.
  3. Infrastructure for the development of bio-based materials and building systems. Equipment Grant. Canadian Foundation for Innovation (CFI) – Innovation Fund. 2018-2021. 3 581 145 $CAD.
  4. Characterization and valorization of contaminated biomass. Consortium de recherche et innovations en bioprocédés industriels au Québec (CRIBIQ). 2017-2021. 330 000 $CAD.

Publicaciones

  1. Vu V-A, Cloutier A, Bissonnette B, Blanchet P, Dagenais C. (2020). Steatite Powder Additives in Wood-Cement Drywall Particleboards. Materials. 13: 4813. http://dx.doi.org/10.3390/ma13214813.
  2. Vu, V-A; Cloutier, A.; Bissonnette, B.; Blanchet, P.; Duchesne, J. (2019). The Effect of Wood Ash as a Partial Cement Replacement Material for Making Wood-Cement Panels. Materials. 12: 1-11. http://dx.doi.org/10.3390/ma12172766.
  3. Fang, C.-H., Cloutier, A., Jiang, Z-H., He, J.-Z., and Fei, B.-H. (2019). Improvement of wood densification process via enhancing steam diffusion, distribution and evaporation. Bioresources. 14(2): 3278-3288. http://dx.doi.org/10.15376/biores.14.2.3278-3288.
  4. Mvolo, C.S.; Koubaa, A.; Beaulieu, J.; Cloutier, A.; Defo, M.; Yemele, M.-C. (2019). Phenotypic Correlations among Growth and Selected WoodProperties in White Spruce (Picea glauca (Moench) Voss). Forests. 10: 1-17. http://dx.doi.org/10.3390/f10070589.
  5. Fu, Q.; Cloutier, A.; Laghdir, A.; Stevanovic, T. (2019). Surface chemical changes of sugar maple wood induced by thermo-hygromechanical (THM) treatment. Materials. 12: 1-12. http://dx.doi.org/10.3390/ma12121946.
  6. Cruz, N.; Bustos, C.; Aguayo, M.G.; Cloutier, A.; Castillo, R. (2018). Impact of the chemical composition of Pinus radiata wood on its physical and mechanical properties following thermo-hygromechanical densification. Bioresources. 13(2): 2268-2282.
  7. Fu, Q.; Cloutier, A.; Laghdir, A. (2018). Heat and Mass Transfer Properties of Sugar Maple Wood Treated by the Thermo-Hygro-Mechanical Densification Process. Fibers. 6(51): 1-12. http://dx.doi.org/10.3390/fib6030051.
  8. A.S.M. Azmul Huda, Ahmed Koubaa, Alain Cloutier, Roger E. Hernández, Pierre Périnet, Yves Fortin. (2018). Phenotypic and Genotypic Correlations for Wood Properties of Hybrid Poplar Clones of Southern Quebec. Forests. 9(140): 1-17. http://dx.doi.org/10.3390/f9030140.
  9. Rebolledo, P.; Cloutier, A.; Yeleme, M.-C. (2018). Gas permeability of fiberboard mats as a function of density and fiber size. Wood Material Science and Engineering. http://dx.doi.org/10.1080/17480272.2018.1513070.
  10. Rebolledo, P.; Cloutier, A.; Yemele, M.-C. (2018). Effect of Density and Fiber Size on Porosity and Thermal Conductivity of Fiberboard Mats. Fibers. 6(81): 1-17. http://dx.doi.org/10.3390/fib6040081.
  11. Nguyen QN* , Cloutier A, Stevanovic T, Achim A. (2017). Pressurized hot water treatment of sugar maple and yellow birch wood particles for high quality fuel pellet production. Biomass and Bioenergy. 98: 206-213. http://dx.doi.org/10.1016/j.biombioe.2017.01.028.
  12. Kavianiboroujeni A, Cloutier A, Rodrigue D. (2017). Low velocity impact behaviour of asymmetric three layer sandwich composite structures with and without foam core. Polymers and Polymer Composites. 25(5): 381-394.
  13. Fu Q, Cloutier A, Laghdir A. (2017). Effects of heat and steam on the mechanical properties and dimensional stability of thermo-hygromechanically-densified sugar maple wood. Bioresources. 12(4): 9212 - 9226. http://dx.doi.org/10.15376/biores.12.4. 9212 - 9226.
  14. Salvo, L; Leandro, L; Contreras, H; Cloutier, A; Elustondo, DM; Ananias, RA. (2017). Radial variation of density and anatomical features of Eucalyptus nitens trees. Wood and Fiber Science. 49(3): 301-311.
  15. Nguyen QN*, Cloutier A, Achim A, Stevanovic T. (2016). Fuel properties of sugar maple and yellow birch wood in relation with tree vigor. Bioresources. 11(2): 3275-3288.
  16. Fu Q*, Cloutier A, Laghdir, A. (2016). Optimization of the thermo-hygromechanical (THM) process for sugar maple wood densification. Bioresources. 11(4): 8844-8859.
  17. Pérez-Peña, N.; Cloutier, A.; Segovia, F.; Salinas-Lira, C.; Sepúlveda-Villarroel, L.; Elustondo, D.M.;Ananias, R. (2016). Hygromechanical strains during the drying of Eucalyptus nitens boards. Maderas:Ciencia y tecnologia. 18(2): 235-244. http://dx.doi.org/10.4067/S0718-221X2016005000021.
  18. Mvolo CS, Koubaa A, Beaulieu J, Cloutier A, Defo M, Yemele M-C. (2016). Variation in wood quality in white spruce (Picea glauca (Moench) voss) Part II. Intra-ringphenotypic relationship among anatomical, growth and physical wood properties in white spruce (Picea glauca (Moench) Voss). Forests.
Doctorado y Magíster en Ingeniería de Materiales y Procesos Sustentables | Departamento de Ingeniería en Maderas | Facultad Ingeniería
Universidad del Bío-Bío Avda. Collao N°1202 CP. 4081112 | +56 41 3111687, Fono/Fax +56 41 3111027 | dimpros@ubiobio.cl